Code: 20EE3301, 20EC3301

II B.Tech - I Semester – Regular/Supplementary Examinations DECEMBER 2022

ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS (Common for EEE, ECE)

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max.			
					Marks			
		UNIT-I						
1	a)	Define transistor and explain different modes of BJT.	L2	CO1	7 M			
	b)		L2	CO1	7 M			
		circuits? And explain any one type of						
		biasing in BJT amplifier.						
		OR						
2	a)	How BJT works as a switch & an amplifier	L4	CO2	7 M			
		and analyze with examples.						
	b)	A BJT having β =100 is biased at a dc	L3	CO4	7 M			
		collector current of 1mA. Find the value of						
		g_m , r_e and r_π at the bias point.						
	UNIT-II							
3	a)	Explain the small signal operation of the	L3	CO2	7 M			
		enhancement MOSFET amplifier and derive						
		voltage gain.						

	b)	Derive the expression for the voltage gain of	12	CO2	7 М						
	b)	Derive the expression for the voltage gain of	L3	CO2	7 M						
		Common source amplifier and Common									
		drain amplifier configuration, under small									
		signal low frequency conditions.									
OR											
4	a)	Outline the Biasing in MOS Amplifier	L2	CO4	7 M						
		Circuits.									
	b)	Draw and explain I-V characteristic of	L2	CO1	7 M						
		MOSFET.									
UNIT-III											
5	a)	Solve the mid band gain AM and the upper	L3	CO3	7 M						
		3-dB frequency f_H of a CS amplifier fed									
		with a signal source having an internal									
		resistance $R_{sig}=100k\Omega$. The amplifier has									
		$R_G=4.7M$ Ω , $R_D=R_L=15k$ Ω , $g_m=1mA/V$,									
		$r_0=150$ k Ω , $C_{gs}=1$ pF and $C_{gd}=0.4$ pF.									
	b)	For the amplifier in Figure below determine	L3	CO3	7 M						
		the input impedance and load voltage.									
		$V_{in} = 10 \text{ mV}, V_{DD} = 12 \text{ , } R_G = 1M\Omega,$									
		$R_{\rm D} = 1.5 \text{ k}\Omega, R_{\rm SW} = 10 \Omega, R_{\rm S} = 200 \Omega,$									
		$R_L=12 \text{ k}\Omega$, $I_{DSS}=20 \text{ mA}$, $V_{GS(off)}=-1 \text{ V}$.									
		+V _{DD}									
		ļ									
	C_{in} $C_{out} \leq B_{in}$										
	$V_{in} \odot R_{g} \stackrel{\sim}{\geq} \stackrel{\sim}{\geq} R_{sw}$										
$\downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad$											
		$\sum_{i=1}^{k} \alpha_{s} = C_{s}$									

		OR						
6	a)	Explain MOSFET internal capacitances and	L2	7 M				
		high frequency model in brief.						
	b)	Explain in brief the Low and High	L2	CO1	7 M			
		Frequency Response of Common source						
	T	UNIT-IV	1					
7	a)	Derive gain, input and output impedance of	L3	CO3	7 M			
		Differential gain of the active loaded MOS						
		pair.						
	b)	A MOS differential pair is driven with an	L3	CO3	7 M			
		input CM level of 1.6V. If $I_{SS}=1mA$,						
		$V_{\text{TH}}=0.5 \text{ V}, K_n^1 \left(\frac{W}{L}\right) = 4mA/V^2, V_{\text{D1}}=1V$						
		and $V_{DD}=2$ V, what is the maximum						
		allowable load resistance?						
		OR						
8	a)	Explain two stages CMOS OP-AMP with	L2	CO3	7 M			
		neat diagram.						
	b)	A MOS differential amplifier is operated at	L4	CO3	7 M			
		a total current of 0.8mA, using transistors						
		with a W/L ratio of 100,						
		$kn'=\mu_n C_{ox}=0.2mA/V^2$, $V_A=20V$, and						
		$R_D = 5k\Omega$. Find $V_{ov} = (V_{GS} - V_t)$, g_m , r_o , and A_d .						
	UNIT-V							
9	a)	Analyze and explain basic MOSFET current	L4	CO4	7 M			
		source with neat diagram.						
	b)	Construct the basic MOSFET current	L3	CO4	7 M			
		steering circuits with working principle.						

	OR									
10	a)	Compare	important	characteristics		of	L4	CO4	7 M	
		MOSFET and BJT.								
	b)	What is	MOSFET	and	classify	the	L2	CO4	7 M	
	MOSFET and write the advantages and									
		Applications of MOSFET over BJT.								